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Finite and discrete probability distributions

This chapter introduces concepts from discrete probability theory. We begin
with a discussion of finite probability distributions, and then towards the end
of the chapter we discuss the more general notion of a discrete probability
distribution.

6.1 Finite probability distributions: basic definitions

A finite probability distribution D = (U ,P) is a finite, non-empty set
U , together with a function P that maps u ∈ U to P[u] ∈ [0, 1], such that∑

u∈U
P[u] = 1. (6.1)

The set U is called the sample space and the function P is called the
probability function.

Intuitively, the elements of U represent the possible outcomes of a random
experiment, where the probability of outcome u ∈ U is P[u].

Up until §6.10, we shall use the phrase “probability distribution” to mean
“finite probability distribution.”

Example 6.1. If we think of rolling a fair die, then U := {1, 2, 3, 4, 5, 6},
and P[u] := 1/6 for all u ∈ U gives a probability distribution describing the
possible outcomes of the experiment. 2

Example 6.2. More generally, if U is a finite set, and P[u] = 1/|U| for all
u ∈ U , then D is called the uniform distribution on U . 2

Example 6.3. A coin flip is an example of a Bernoulli trial, which is
in general an experiment with only two possible outcomes: success, which
occurs with probability p, and failure, which occurs with probability q :=
1− p. 2
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An event is a subset A of U , and the probability of A is defined to be

P[A] :=
∑
u∈A

P[u]. (6.2)

Thus, we extend the domain of definition of P from outcomes u ∈ U to
events A ⊆ U .

For an event A ⊆ U , let A denote the complement of A in U . We have
P[∅] = 0, P[U ] = 1, P[A] = 1− P[A].

For any events A,B ⊆ U , if A ⊆ B, then P[A] ≤ P[B]. Also, for any events
A,B ⊆ U , we have

P[A ∪ B] = P[A] + P[B]− P[A ∩ B] ≤ P[A] + P[B]; (6.3)

in particular, if A and B are disjoint, then

P[A ∪ B] = P[A] + P[B]. (6.4)

More generally, for any events A1, . . . ,An ⊆ U we have

P[A1 ∪ · · · ∪ An] ≤ P[A1] + · · ·+ P[An], (6.5)

and if the Ai are pairwise disjoint, then

P[A1 ∪ · · · ∪ An] = P[A1] + · · ·+ P[An]. (6.6)

In working with events, one makes frequent use of the usual rules of
Boolean logic. DeMorgan’s law says that for events A and B, we have

A ∪ B = A ∩ B and A ∩ B = A ∪ B.

We also have the distributive law: for events A,B, C, we have

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) and A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

In some applications and examples, it is more natural to use the logical
“or” connective “∨” in place of “∪,” and the logical “and” connective “∧”
in place of “∩.”

Example 6.4. Continuing with Example 6.1, the probability of an “odd
roll” A = {1, 3, 5} is 1/2. 2

Example 6.5. More generally, if D is the uniform distribution on a set U
of cardinality n, and A is a subset of U of cardinality k, then P[A] = k/n.
2

Example 6.6. Alice rolls two dice, and asks Bob to guess a value that
appears on either of the two dice (without looking). Let us model this
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situation by considering the uniform distribution on {(x, y) : x, y = 1, . . . , 6},
where x represents the value of the first die, and y the value of the second.

For x = 1, . . . , 6, let Ax be the event that the first die is x, and Bx

the event that the second die is x, Let Cx = Ax ∪ Bx be the event that x
appears on either of the two dice. No matter what value x Bob chooses, the
probability that this choice is correct is

P[Cx] = P[Ax ∪ Bx] = P[Ax] + P[Bx]− P[Ax ∩ Bx]

= 1/6 + 1/6− 1/36 = 11/36. 2

If D1 = (U1,P1) and D2 = (U2,P2) are probability distributions, we can
form the product distribution D = (U ,P), where U := U1 × U2, and
P[(u1, u2)] := P1[u1]P2[u2]. It is easy to verify that the product distribution
is also a probability distribution. Intuitively, the elements (u1, u2) of U1×U2

denote the possible outcomes of two separate and independent experiments.
More generally, if Di = (Ui,Pi) for i = 1, . . . , n, we can define the product

distribution D = (U ,P), where U := U1 × · · · × Un, and P[(u1, . . . , un)] :=
P[u1] . . .P[un].

Example 6.7. We can view the probability distribution in Example 6.6 as
the product of two copies of the uniform distribution on {1, . . . , 6}. 2

Example 6.8. Consider the product distribution of n copies of a Bernoulli
trial (see Example 6.3), with associated success probability p and failure
probability q := 1 − p. An element of the sample space is an n-tuple of
success/failure values. Any such tuple that contains, say, k successes and
n − k failures, occurs with probability pkqn−k, regardless of the particular
positions of the successes and failures. 2

Exercise 6.1. This exercise asks you to recast previously established results
in terms of probability theory.

(a) Let k ≥ 2 be an integer, and suppose an integer n is chosen at random
from among all k-bit integers. Show that the probability that n is
prime is Θ(1/k).

(b) Let n be a positive integer, and suppose that a and b are chosen
at random from the set {1, . . . , n}. Show that the probability that
gcd(a, b) = 1 is at least 1/4.

(c) Let n be a positive integer, and suppose that a is chosen at random
from the set {1, . . . , n}. Show that the probability that gcd(a, n) = 1
is Ω(1/ log log n).
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Exercise 6.2. Suppose A,B, C are events such that A ∩ C = B ∩ C. Show
that |P[A]− P[B]| ≤ P[C].

Exercise 6.3. Generalize equation (6.3) by proving the inclu-
sion/exclusion principle: for events A1, . . . ,An, we have

P[A1 ∪ · · · ∪ An] =
∑

i

P[Ai]−
∑
i<j

P[Ai ∩ Aj ] +

∑
i<j<k

P[Ai ∩ Aj ∩ Ak]− · · ·+ (−1)n−1P[A1 ∩ · · · ∩ An]

=
n∑

`=1

(−1)`−1
∑

i1<···<i`

P[Ai1 ∩ · · · ∩ Ai` ].

Exercise 6.4. Show that for events A1, . . . ,An, we have

P[A1 ∪ · · · ∪ An] ≥
∑

i

P[Ai]−
∑
i<j

P[Ai ∩ Aj ].

Exercise 6.5. Generalize inequality (6.5) and the previous exercise by prov-
ing Bonferroni’s inequalities: for events A1, . . . ,An, and defining

em := P[A1 ∪ · · · ∪ An]−
m∑

`=1

(−1)`−1
∑

i1<···<i`

P[Ai1 ∩ · · · ∩ Ai` ]

for m = 1, . . . , n, we have em ≤ 0 for odd m, and em ≥ 0 for even m.

6.2 Conditional probability and independence

Let D = (U ,P) be a probability distribution.
For any event B ⊆ U with P[B] 6= 0 and any u ∈ U , let us define

P[u | B] :=
{

P[u]/P[B] if u ∈ B,
0 otherwise.

Viewing B as fixed, we may view the function P[· | B] as a new probability
function on the sample space U , and this gives rise a new probability distri-
bution DB := (P[· | B],U), called the conditional distribution given B.

Intuitively, DB has the following interpretation: if a random experiment
produces an outcome according to the distribution D, and we learn that the
event B has occurred, then the distribution DB assigns new probabilities to
all possible outcomes, reflecting the partial knowledge that the event B has
occurred.



100 Finite and discrete probability distributions

As usual, we extend the domain of definition of P[· | B] from outcomes to
events. For any event A ⊆ U , we have

P[A | B] =
∑
u∈A

P[u | B] =
P[A ∩ B]

P[B]
.

The value P[A | B] is called the conditional probability of A given B.
Again, the intuition is that this is the probability that the event A occurs,
given the partial knowledge that the event B has occurred.

For events A and B, if P[A ∩ B] = P[A] · P[B], then A and B are called
independent events. If P[B] 6= 0, a simple calculation shows that A and B
are independent if and only if P[A | B] = P[A].

A collection A1, . . . ,An of events is called pairwise independent if
P[Ai∩Aj ] = P[Ai]P[Aj ] for all i 6= j, and is called mutually independent
if every subset Ai1 , . . . ,Aik of the collection satisfies

P[Ai1 ∩ · · · ∩ Aik ] = P[Ai1 ] · · ·P[Aik ].

Example 6.9. In Example 6.6, suppose that Alice tells Bob the sum of
the two dice before Bob makes his guess. For example, suppose Alice tells
Bob the sum is 4. Then what is Bob’s best strategy in this case? Let Sz be
the event that the sum is z, for z = 2, . . . , 12, and consider the conditional
probability distribution given S4. This is the uniform distribution on the
three pairs (1, 3), (2, 2), (3, 1). The numbers 1 and 3 both appear in two
pairs, while the number 2 appears in just one pair. Therefore,

P[C1 | S4] = P[C3 | S4] = 2/3,

while

P[C2 | S4] = 1/3

and

P[C4 | S4] = P[C5 | S4] = P[C6 | S4] = 0.

Thus, if the sum is 4, Bob’s best strategy is to guess either 1 or 3.
Note that the events A1 and B2 are independent, while the events A1 and
S4 are not. 2

Example 6.10. Suppose we toss three fair coins. Let A1 be the event that
the first coin is “heads,” let A2 be the event that the second coin is “heads,”
and let A3 be the event that the third coin is “heads.” Then the collection
of events {A1,A2,A3} is mutually independent.

Now let B12 be the event that the first and second coins agree (i.e., both
“heads” or both “tails”), let B13 be the event that the first and third coins
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agree, and let B23 be the event that the second and third coins agree. Then
the collection of events {B12,B13,B23} is pairwise independent, but not mu-
tually independent. Indeed, the probability that any one of the events occurs
is 1/2, and the probability that any two of the three events occurs is 1/4;
however, the probability that all three occurs is also 1/4, since if any two
events occur, then so does the third. 2

Suppose we have a collection B1, . . . ,Bn of events that partitions U , such
that each event Bi occurs with non-zero probability. Then it is easy to see
that for any event A,

P[A] =
n∑

i=1

P[A ∩ Bi] =
n∑

i=1

P[A | Bi] · P[Bi]. (6.7)

Furthermore, if P[A] 6= 0, then for any j = 1, . . . , n, we have

P[Bj | A] =
P[A ∩ Bj ]

P[A]
=

P[A | Bj ]P[Bj ]∑n
i=1 P[A | Bi]P[Bi]

. (6.8)

This equality, known as Bayes’ theorem, lets us compute the conditional
probability P[Bj | A] in terms of the conditional probabilities P[A | Bi].

The equation (6.7) is useful for computing or estimating probabilities by
conditioning on specific events Bi (i.e., by considering the conditional prob-
ability distribution given Bi) in such a way that the conditional probabilities
P[A | Bi] are easy to compute or estimate. Also, if we want to compute a
conditional probability P[A | C], we can do so by partitioning C into events
B1, . . . ,Bn, where each Bi occurs with non-zero probability, and use the
following simple fact:

P[A | C] =
n∑

i=1

P[A | Bi]P[Bi]/P[C]. (6.9)

Example 6.11. This example is based on the TV game show “Let’s make
a deal,” which was popular in the 1970’s. In this game, a contestant chooses
one of three doors. Behind two doors is a “zonk,” that is, something amusing
but of little or no value, such as a goat, and behind one of the doors is a
“grand prize,” such as a car or vacation package. We may assume that
the door behind which the grand prize is placed is chosen at random from
among the three doors, with equal probability. After the contestant chooses
a door, the host of the show, Monty Hall, always reveals a zonk behind one
of the two doors not chosen by the contestant. The contestant is then given
a choice: either stay with his initial choice of door, or switch to the other
unopened door. After the contestant finalizes his decision on which door
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to choose, that door is opened and he wins whatever is behind the chosen
door. The question is, which strategy is better for the contestant: to stay
or to switch?

Let us evaluate the two strategies. If the contestant always stays with his
initial selection, then it is clear that his probability of success is exactly 1/3.

Now consider the strategy of always switching. Let B be the event that
the contestant’s initial choice was correct, and let A be the event that the
contestant wins the grand prize. On the one hand, if the contestant’s initial
choice was correct, then switching will certainly lead to failure. That is,
P[A | B] = 0. On the other hand, suppose that the contestant’s initial
choice was incorrect, so that one of the zonks is behind the initially chosen
door. Since Monty reveals the other zonk, switching will lead with certainty
to success. That is, P[A | B] = 1. Furthermore, it is clear that P[B] = 1/3.
So we compute

P[A] = P[A | B]P[B] + P[A | B]P[B] = 0 · (1/3) + 1 · (2/3) = 2/3.

Thus, the “stay” strategy has a success probability of 1/3, while the
“switch” strategy has a success probability of 2/3. So it is better to switch
than to stay.

Of course, real life is a bit more complicated. Monty did not always
reveal a zonk and offer a choice to switch. Indeed, if Monty only revealed
a zonk when the contestant had chosen the correct door, then switching
would certainly be the wrong strategy. However, if Monty’s choice itself was
a random decision made independent of the contestant’s initial choice, then
switching is again the preferred strategy. 2

Example 6.12. Suppose that the rate of incidence of disease X in the
overall population is 1%. Also suppose that there is a test for disease X;
however, the test is not perfect: it has a 5% false positive rate (i.e., 5% of
healthy patients test positive for the disease), and a 2% false negative rate
(i.e., 2% of sick patients test negative for the disease). A doctor gives the
test to a patient and it comes out positive. How should the doctor advise
his patient? In particular, what is the probability that the patient actually
has disease X, given a positive test result?

Amazingly, many trained doctors will say the probability is 95%, since the
test has a false positive rate of 5%. However, this conclusion is completely
wrong.

Let A be the event that the test is positive and let B be the event that
the patient has disease X. The relevant quantity that we need to estimate
is P[B | A]; that is, the probability that the patient has disease X, given a
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positive test result. We use Bayes’ theorem to do this:

P[B | A] =
P[A | B]P[B]

P[A | B]P[B] + P[A | B]P[B]
=

0.98 · 0.01
0.98 · 0.01 + 0.05 · 0.99

≈ 0.17.

Thus, the chances that the patient has disease X given a positive test result
is just 17%. The correct intuition here is that it is much more likely to get
a false positive than it is to actually have the disease.

Of course, the real world is a bit more complicated than this example
suggests: the doctor may be giving the patient the test because other risk
factors or symptoms may suggest that the patient is more likely to have the
disease than a random member of the population, in which case the above
analysis does not apply. 2

Exercise 6.6. Consider again the situation in Example 6.12, but now sup-
pose that the patient is visiting the doctor because he has symptom Y .
Furthermore, it is known that everyone who has disease X exhibits symp-
tom Y , while 10% of the population overall exhibits symptom Y . Assuming
that the accuracy of the test is not affected by the presence of symptom Y ,
how should the doctor advise his patient should the test come out positive?

Exercise 6.7. Suppose we roll two dice, and let (x, y) denote the outcome
(as in Example 6.6). For each of the following pairs of events A and B,
determine if they are independent or not:

(a) A: x = y; B: y = 1.

(b) A: x ≥ y; B: y = 1.

(c) A: x ≥ y; B: y2 = 7y − 6.

(d) A: xy = 6; B: y = 3.

Exercise 6.8. Let C be an event that occurs with non-zero probability,
and let B1, . . . ,Bn be a partition of C, such that each event Bi occurs with
non-zero probability. Let A be an event and let p be a real number with
0 ≤ p ≤ 1. Suppose that for each i = 1, . . . , n, the conditional probability of
A given Bi is ≤ p (resp., <,=, >,≥ p). Show that the conditional probability
of A given C is also ≤ p (resp., <,=, >,≥ p).

Exercise 6.9. Show that if two events A and B are independent, then so are
A and B. More generally, show that if A1, . . . ,An are mutually independent,
then so are A′1, . . . ,A′n, where each A′i denotes either Ai or Ai.

Exercise 6.10. This exercise develops an alternative proof, based on prob-
ability theory, of Theorem 2.14. Let n > 1 be an integer and consider an
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experiment in which a number a is chosen at random from {0, . . . , n − 1}.
If n = pe1

1 · · · per
r is the prime factorization of n, let Ai be the event that a

is divisible by pi, for i = 1, . . . , r.
(a) Show that

φ(n)/n = P[A1 ∩ · · · ∩ Ar],

where φ is Euler’s phi function.
(b) Show that if i1, . . . , i` are distinct indices between 1 and r, then

P[Ai1 ∩ · · · ∩ Ai` ] =
1

pi1 · · · pi`

.

Conclude that the events Ai are mutually independent, and P[Ai] =
1/pi.

(c) Using part (b) and the result of the previous exercise, show that

P[A1 ∩ · · · ∩ Ar] =
r∏

i=1

(1− 1/pi).

(d) Combine parts (a) and (c) to derive the result of Theorem 2.14 that

φ(n) = n

r∏
i=1

(1− 1/pi).

6.3 Random variables

Let D = (U ,P) be a probability distribution.
It is sometimes convenient to associate a real number, or other mathe-

matical object, with each outcome u ∈ U . Such an association is called a
random variable; more formally, a random variable X is a function from
U into a set X . If X is a subset of the real numbers, then X is called
a real random variable. When we speak of the image of X, we sim-
ply mean its image in the usual function-theoretic sense, that is, the set
X(U) = {X(u) : u ∈ U}.

One may define any number of random variables on a given probability
distribution. If X : U → X is a random variable, and f : X → Y is a
function, then f(X) := f ◦X is also a random variable.

Example 6.13. Suppose we flip n fair coins. Then we may define a ran-
dom variable X that maps each outcome to a bit string of length n, where a
“head” is encoded as a 1-bit, and a “tail” is encoded as a 0-bit. We may de-
fine another random variable Y that is the number of “heads.” The variable
Y is a real random variable. 2
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Example 6.14. If A is an event, we may define a random variable X as
follows: X := 1 if the event A occurs, and X := 0 otherwise. The variable X
is called the indicator variable for A. Conversely, if Y is any 0/1-valued
random variable, we can define the event B to be the subset of all possible
outcomes that lead to Y = 1, and Y is the indicator variable for the event
B. Thus, we can work with either events or indicator variables, whichever
is more natural and convenient. 2

Let X : U → X be a random variable. For x ∈ X , we write “X = x”
as shorthand for the event {u ∈ U : X(u) = x}. More generally, for any
predicate φ, we may write “φ(X)” as shorthand for the event {u ∈ U :
φ(X(u))}.

A random variable X defines a probability distribution on its image X ,
where the probability associated with x ∈ X is P[X = x]. We call this the
distribution of X. For two random variables X,Y defined on a probability
distribution, Z := (X,Y ) is also a random variable whose distribution is
called the joint distribution of X and Y .

If X is a random variable, and A is an event with non-zero probability,
then the conditional distribution of X given A is a probability distri-
bution on the image X of X, where the probability associated with x ∈ X
is P[X = x | A].

We say two random variables X,Y are independent if for all x in the
image of X and all y in the image of Y , the events X = x and Y = y are
independent, which is to say,

P[X = x ∧ Y = y] = P[X = x]P[Y = y].

Equivalently, X and Y are independent if and only if their joint distribution
is equal to the product of their individual distributions. Alternatively, X
and Y are independent if and only if for all values x taken by X with non-
zero probability, the conditional distribution of Y given the event X = x is
the same as the distribution of Y .

LetX1, . . . , Xn be a collection of random variables, and let Xi be the image
of Xi for i = 1, . . . , n. We say X1, . . . , Xn are pairwise independent if for
all i, j = 1, . . . , n with i 6= j, the variables Xi and Xj are independent. We
say that X1, . . . , Xn are mutually independent if for all x1 ∈ X1, . . . , xn ∈
Xn, we have

P[X1 = x1 ∧ · · · ∧Xn = xn] = P[X1 = x1] · · ·P[Xn = xn].

More generally, for k = 2, . . . , n, we say that X1, . . . , Xn are k-wise inde-
pendent if any k of them are mutually independent.
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Example 6.15. We toss three coins, and set Xi := 0 if the ith coin is
“tails,” and Xi := 1 otherwise. The variables X1, X2, X3 are mutually inde-
pendent. Let us set Y12 := X1 ⊕X2, Y13 := X1 ⊕X3, and Y23 := X2 ⊕X3,
where “⊕” denotes “exclusive or,” that is, addition modulo 2. Then the
variables Y12, Y13, Y23 are pairwise independent, but not mutually indepen-
dent—observe that Y12 ⊕ Y13 = Y23. 2

The following is a simple but useful fact:

Theorem 6.1. Let Xi : U → Xi be random variables, for i = 1, . . . , n, and
suppose that there exist functions fi : Xi → [0, 1], for i = 1, . . . , n, such that∑

xi∈Xi

fi(xi) = 1 (i = 1 . . . n),

and

P[X1 = x1 ∧ · · · ∧Xn = xn] = f1(x1) · · · fn(xn)

for all x1 ∈ X1, . . . , xn ∈ Xn. Then for any subset of distinct indices
i1, . . . , i` ∈ {1, . . . , n}, we have

P[Xi1 = xi1 ∧ · · · ∧Xi` = xi` ] = fi1(xi1) · · · fi`(xi`)

for all xi1 ∈ Xi1 , . . . , xi` ∈ Xi` .

Proof. To prove the theorem, it will suffice to show that we can “eliminate”
a single variable, say Xn, meaning that for all x1, . . . , xn−1, we have

P[X1 = x1 ∧ · · · ∧Xn−1 = xn−1] = f1(x1) · · · fn−1(xn−1).

Having established this, we may then proceed to eliminate any number of
variables (the ordering of the variables is clearly irrelevant).

We have

P[X1 = x1 ∧ · · · ∧Xn−1 = xn−1]

=
∑

xn∈Xn

P[X1 = x1 ∧ · · · ∧Xn−1 = xn−1 ∧Xn = xn]

=
∑

xn∈Xn

f1(x1) · · · fn−1(xn−1)fn(xn)

= f1(x2) · · · fn−1(xn−1)
∑

xn∈Xn

fn(xn)

= f1(x1) · · · fn−1(xn−1). 2
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The following three theorems are immediate consequences of the above
theorem:

Theorem 6.2. Let Xi : U → Xi be random variables, for i = 1, . . . , n, such
that

P[X1 = x1 ∧ · · · ∧Xn = xn] =
1
|X1|
· · · 1
|Xn|

(for all x1 ∈ X1, . . . , xn ∈ Xn).

Then the variables Xi are mutually independent with each Xi uniformly
distributed over Xi.

Theorem 6.3. If X1, . . . , Xn are mutually independent random variables,
then they are k-wise independent for all k = 2, . . . , n.

Theorem 6.4. If Di = (Ui,Pi) are probability distributions for i = 1, . . . , n,
then the projection functions πi : U1×· · ·×Un → Ui, where πi(u1, . . . , un) =
ui, are mutually independent random variables on the product distribution
D1 × · · · ×Dn.

We also have:

Theorem 6.5. If X1, . . . , Xn are mutually independent random variables,
and g1, . . . , gn are functions, then g1(X1), . . . , gn(Xn) are also mutually in-
dependent random variables.

Proof. The proof is a straightforward, if somewhat tedious, calculation. For
i = 1, . . . , n, let yi be some value in the image of gi(Xi), and let Xi :=
g−1
i ({yi}). We have

P[g1(X1) = y1 ∧ · · · ∧ gn(Xn) = yn]

= P

[
(

∨
x1∈X1

X1 = x1) ∧ · · · ∧ (
∨

xn∈Xn

Xn = xn)
]

= P

[ ∨
x1∈X1

· · ·
∨

xn∈Xn

(X1 = x1 ∧ · · · ∧Xn = xn)
]

=
∑

x1∈X1

· · ·
∑

xn∈Xn

P[X1 = x1 ∧ · · · ∧Xn = xn]

=
∑

x1∈X1

· · ·
∑

xn∈Xn

P[X1 = x1] · · ·P[Xn = xn]

=
( ∑

x1∈X1

P[X1 = x1]
)
· · ·

( ∑
xn∈Xn

P[Xn = xn]
)
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= P

[ ∨
x1∈X1

X1 = x1

]
· · ·P

[ ∨
xn∈Xn

Xn = xn

]
= P[g1(X1) = y1] · · ·P[gn(Xn) = yn]. 2

Example 6.16. If we toss n dice, and let Xi denote the value of the ith die
for i = 1, . . . , n, then the Xi are mutually independent random variables. If
we set Yi := X2

i for i = 1, . . . , n, then the Yi are also mutually independent
random variables. 2

Example 6.17. This example again illustrates the notion of pairwise in-
dependence. Let X and Y be independent and uniformly distributed over
Zp, where p is a prime. For a ∈ Zp, let Za := aX + Y . Then we claim that
each Za is uniformly distributed over Zp, and that the collection of random
variables {Za : a ∈ Zp} is pairwise independent.

To prove this claim, let a, b ∈ Zp with a 6= b, and consider the map
fa,b : Zp×Zp → Zp×Zp that sends (x, y) to (ax+y, bx+y). It is easy to see
that fa,b is injective; indeed, if ax+ y = ax′+ y′ and bx+ y = bx′+ y′, then
subtracting these two equations, we obtain (a − b)x = (a − b)x′, and since
a − b 6= [0]p, it follows that x = x′, which also implies y = y′. Since fa,b is
injective, it must be a bijection from Zp×Zp onto itself. Thus, since (X,Y )
is uniformly distributed over Zp×Zp, so is (Za, Zb) = (aX +Y, bX +Y ). So
for all z, z′ ∈ Zp, we have

P[Za = z ∧ Zb = z′] = 1/p2,

and so the claim follows from Theorem 6.2.
Note that the variables Za are not 3-wise independent, since the value of

any two determines the value of all the rest (verify). 2

Example 6.18. We can generalize the previous example as follows. Let
X1, . . . , Xt, Y be mutually independent and uniformly distributed over Zp,
where p is prime, and for a1, . . . , at ∈ Zp, let Za1,...,at := a1X1+· · ·+atXt+Y .
We claim that each Za1,...,at is uniformly distributed over Zp, and that the
collection of all such Za1,...,at is pairwise independent.

To prove this claim, it will suffice (by Theorem 6.2) to prove that for all

a1, . . . , at, b1, . . . , bt, z, z
′ ∈ Zp,

subject to (a1, . . . , at) 6= (b1, . . . , bt), we have

P[Za1,...,at = z ∧ Zb1,...,bt = z′] = 1/p2. (6.10)
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Since (a1, . . . , at) 6= (b1, . . . , bt), we know that aj 6= bj for some j = 1, . . . , t.
Let us assume that a1 6= b1 (the argument for j > 1 is analogous).

We first show that for all x2, . . . , xt ∈ Zp, we have

P[Za1,...,at = z ∧ Zb1,...,bt = z′ | X2 = x2 ∧ · · · ∧Xt = xt] = 1/p2. (6.11)

To prove (6.11), consider the conditional probability distribution given
X2 = x2 ∧ · · · ∧Xt = xt. In this conditional distribution, we have

Za1,...,at = a1X1 + Y + c and Zb1,...,bt = b1X1 + Y + d,

where

c := a2x2 + · · ·+ atxt and d := b2x2 + · · ·+ btxt,

and X1 and Y are independent and uniformly distributed over Zp (this
follows from the mutual independence of X1, . . . , Xt, Y before conditioning).
By the result of the previous example, (a1X1 + Y, b1X1 + Y ) is uniformly
distributed over Zp ×Zp, and since the function sending (x, y) ∈ Zp ×Zp to
(x+c, y+d) ∈ Zp×Zp is a bijection, it follows that (a1X1+Y +c, b1X1+Y +d)
is uniformly distributed over Zp × Zp. That proves (6.11).

(6.10) now follows easily from (6.11), as follows:

P[Za1,...,at = z ∧ Zb1,...,bt = z′]

=
∑

x2,...,xt

P[Za1,...,at = z ∧ Zb1,...,bt = z′ | X2 = x2 ∧ · · · ∧Xt = xt] ·
P[X2 = x2 ∧ · · · ∧Xt = xt]

=
∑

x2,...,xt

1
p2
· P[X2 = x2 ∧ · · · ∧Xt = xt]

=
1
p2
·

∑
x2,...,xt

P[X2 = x2 ∧ · · · ∧Xt = xt]

=
1
p2
· 1. 2

Using other algebraic techniques, there are many ways to construct pair-
wise and k-wise independent families of random variables. Such families
play an important role in many areas of computer science.

Example 6.19. Suppose we perform an experiment by executing n

Bernoulli trials (see Example 6.3), where each trial succeeds with the same
probability p, and fails with probability q := 1 − p, independently of the
outcomes of all the other trials. Let X denote the total number of successes.
For k = 0, . . . , n, let us calculate the probability that X = k.

To do this, let us introduce indicator variables X1, . . . , Xn, where for
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i = 1, . . . , n, we have Xi = 1 if the ith trial succeeds, and Xi = 0, otherwise.
By assumption, the Xi are mutually independent. Then we see that X =
X1 + · · · + Xn. Now, consider a fixed value k = 0, . . . , n. Let Ck denote
the collection of all subsets of {1, . . . , n} of size k. For I ∈ Ck, let AI be
the event that Xi = 1 for all i ∈ I and Xi = 0 for all i /∈ I. Since the Xi

are mutually independent, we see that P[AI ] = pkqn−k (as in Example 6.8).
Evidently, the collection of events {AI}I∈Ck is a partition of the event that
X = k. Therefore,

P[X = k] =
∑
I∈Ck

P[AI ] =
∑
I∈Ck

pkqn−k = |Ck|pkqn−k.

Finally, since

|Ck| =
(
n

k

)
,

we conclude that

P[X = k] =
(
n

k

)
pkqn−k.

The distribution of the random variable X is called a binomial distri-
bution. 2

Exercise 6.11. LetX1, . . . , Xn be random variables, and let Xi be the image
of Xi for i = 1, . . . , n. Show that X1, . . . , Xn are mutually independent if
and only if for all i = 2, . . . , n, and all x1 ∈ X1, . . . , xi ∈ Xi, we have

P[Xi = xi | Xi−1 = xi−1 ∧ · · · ∧X1 = x1] = P[Xi = xi].

Exercise 6.12. Let A1, . . . ,An be events with corresponding indicator vari-
ables X1, . . . , Xn. Show that the events A1, . . . ,An are mutually indepen-
dent if and only if the random variables X1, . . . , Xn are mutually indepen-
dent. Note: there is actually something non-trivial to prove here, since
our definitions for independent events and independent random variables
superficially look quite different.

Exercise 6.13. Let C be an event that occurs with non-zero probability,
and let B1, . . . ,Bn be a partition of C, such that each event Bi occurs with
non-zero probability. Let X be a random variable whose image is X , and let
D′ be a probability distribution on X . Suppose that for each i = 1, . . . , n,
the conditional distribution of X given Bi is equal to D′. Show that the
conditional distribution of X given C is also equal to D′.
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Exercise 6.14. Let n be a positive integer, and let X be a random variable
whose distribution is uniform over {0, . . . , n− 1}. For each positive divisor
d of n, let use define the random variable Xd := X mod d. Show that for
any positive divisors d1, . . . , dk of n, the random variables Xd1 , . . . , Xdk

are
mutually independent if and only if d1, . . . , dk are pairwise relatively prime.

Exercise 6.15. With notation as in the previous exercise, let n := 30, and
describe the conditional distribution of X15 given that X6 = 1.

Exercise 6.16. Let W,X, Y be mutually independent and uniformly dis-
tributed over Zp, where p is prime. For any a ∈ Zp, let Za := a2W+aX+Y .
Show that each Za is uniformly distributed over Zp, and that the collection
of all Za is 3-wise independent.

Exercise 6.17. Let Xib, for i = 1, . . . , k and b ∈ {0, 1}, be mutually inde-
pendent random variables, each with a uniform distribution on {0, 1}. For
b1, . . . , bk ∈ {0, 1}, let us define the random variable

Yb1···bk
:= X1b1 ⊕ · · · ⊕Xkbk

,

where “⊕” denotes “exclusive or.” Show that the 2k variables Yb1···bk
are

pairwise independent, each with a uniform distribution over {0, 1}.

6.4 Expectation and variance

Let D = (U ,P) be a probability distribution. If X is a real random variable,
then its expected value is

E[X] :=
∑
u∈U

X(u) · P[u]. (6.12)

If X is the image of X, we have

E[X] =
∑
x∈X

∑
u∈X−1({x})

xP[u] =
∑
x∈X

x · P[X = x]. (6.13)

From (6.13), it is clear that E[X] depends only on the distribution of X
(and not on any other properties of the underlying distribution D). More
generally, by a similar calculation, one sees that if X is any random variable
with image X , and f is a real-valued function on X , then

E[f(X)] =
∑
x∈X

f(x)P[X = x]. (6.14)

We make a few trivial observations about expectation, which the reader
may easily verify. First, if X is equal to a constant c (i.e., X(u) = c for all
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u ∈ U), then E[X] = E[c] = c. Second, if X takes only non-negative values
(i.e., X(u) ≥ 0 all u ∈ U), then E[X] ≥ 0. Similarly, if X takes only positive
values, then E[X] > 0.

A crucial property about expectation is the following:

Theorem 6.6 (Linearity of expectation). For real random variables X
and Y , and real number a, we have

E[X + Y ] = E[X] + E[Y ]

and

E[aX] = aE[X].

Proof. It is easiest to prove this using the defining equation (6.12) for ex-
pectation. For u ∈ U , the value of the random variable X + Y at u is by
definition X(u) + Y (u), and so we have

E[X + Y ] =
∑
u∈U

(X(u) + Y (u))P[u]

=
∑
u∈U

X(u)P[u] +
∑
u∈U

Y (u)P[u]

= E[X] + E[Y ].

For the second part of the theorem, by a similar calculation, we have

E[aX] =
∑

u

(aX(u))P[u] = a
∑

u

X(u)P[u] = aE[X]. 2

More generally, the above theorem implies (using a simple induction ar-
gument) that for any real random variables X1, . . . , Xn, we have

E[X1 + · · ·+Xn] = E[X1] + · · ·+ E[Xn].

So we see that expectation is linear; however, expectation is not in general
multiplicative, except in the case of independent random variables:

Theorem 6.7. If X and Y are independent real random variables, then
E[XY ] = E[X]E[Y ].

Proof. It is easiest to prove this using (6.14). We have

E[XY ] =
∑
x,y

xyP[X = x ∧ Y = y]

=
∑
x,y

xyP[X = x]P[Y = y]
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=
( ∑

x

xP[X = x]
)( ∑

y

yP[Y = y]
)

= E[X] · E[Y ]. 2

More generally, the above theorem implies (using a simple induction ar-
gument) that if X1, . . . , Xn are mutually independent real random variables,
then

E[X1 · · ·Xn] = E[X1] · · ·E[Xn].

The following fact is sometimes quite useful:

Theorem 6.8. If X is a random variable that takes values in the set
{0, 1, . . . , n}, then

E[X] =
n∑

i=1

P[X ≥ i].

Proof. For i = 1, . . . , n, define the random variable Xi so that Xi = 1 if
X ≥ i and Xi = 0 if X < i. Note that E[Xi] = 1 · P[X ≥ i] + 0 · P[X < i] =
P[X ≥ i]. Moreover, X = X1 + · · ·+Xn, and hence

E[X] =
n∑

i=1

E[Xi] =
n∑

i=1

P[X ≥ i]. 2

The variance of a real random variable X is Var[X] := E[(X − E[X])2].
The variance provides a measure of the spread or dispersion of the distri-
bution of X around its expected value E[X]. Note that since (X − E[X])2

takes only non-negative values, variance is always non-negative.

Theorem 6.9. Let X be a real random variable, and let a and b be real
numbers. Then we have

(i) Var[X] = E[X2]− (E[X])2,

(ii) Var[aX] = a2Var[X], and

(iii) Var[X + b] = Var[X].

Proof. Let µ := E[X]. For part (i), observe that

Var[X] = E[(X − µ)2] = E[X2 − 2µX + µ2]

= E[X2]− 2µE[X] + E[µ2] = E[X2]− 2µ2 + µ2

= E[X2]− µ2,

where in the third equality, we used the fact that expectation is linear, and
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in the fourth equality, we used the fact that E[c] = c for constant c (in this
case, c = µ2).

For part (ii), observe that

Var[aX] = E[a2X2]− (E[aX])2 = a2E[X2]− (aµ)2

= a2(E[X2]− µ2) = a2Var[X],

where we used part (i) in the first and fourth equality, and the linearity of
expectation in the second.

Part (iii) follows by a similar calculation (verify):

Var[X + b] = E[(X + b)2]− (µ+ b)2

= (E[X2] + 2bµ+ b2)− (µ2 + 2bµ+ b2)

= E[X2]− µ2 = Var[X]. 2

A simple consequence of part (i) of Theorem 6.9 is that E[X2] ≥ (E[X])2.
Unlike expectation, the variance of a sum of random variables is not equal

to the sum of the variances, unless the variables are pairwise independent :

Theorem 6.10. If X1, . . . , Xn is a collection of pairwise independent real
random variables, then

Var

[ n∑
i=1

Xi

]
=

n∑
i=1

Var[Xi].

Proof. We have

Var

[∑
i

Xi

]
= E

[
(
∑

i

Xi)2

]
−

(
E[

∑
i

Xi]
)2

=
∑

i

E[X2
i ] + 2

∑
i,j
j<i

(E[XiXj ]− E[Xi]E[Xj ])−
∑

i

E[Xi]2

(by Theorem 6.6 and rearranging terms)

=
∑

i

E[X2
i ]−

∑
i

E[Xi]2

(by pairwise independence and Theorem 6.7)

=
∑

i

Var[Xi]. 2

For any random variable X and event B, with P[B] 6= 0, we can define
the conditional expectation of X given B, denoted E[X | B], to be the
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expected value of X in the conditional probability distribution given B. We
have

E[X | B] =
∑
u∈U

X(u) · P[u | B] =
∑
x∈X

xP[X = x | B], (6.15)

where X is the image of X.
If B1, . . . ,Bn is a collection of events that partitions U , where each Bi

occurs with non-zero probability, then it follows from the definitions that

E[X] =
n∑

i=1

E[X | Bi]P[Bi]. (6.16)

Example 6.20. Let X be uniformly distributed over {1, . . . , n}. Let us
compute E[X] and Var[X]. We have

E[X] =
n∑

x=1

x · 1
n

=
n(n+ 1)

2
· 1
n

=
n+ 1

2
.

We also have

E[X2] =
n∑

x=1

x2 · 1
n

=
n(n+ 1)(2n+ 1)

6
· 1
n

=
(n+ 1)(2n+ 1)

6
.

Therefore,

Var[X] = E[X2]− (E[X])2 =
n2 − 1

12
. 2

Example 6.21. Let X denote the value of a die toss. Let A be the event
that X is even. Then in the conditional probability space given A, we see
that X is uniformly distributed over {2, 4, 6}, and hence

E[X | A] =
2 + 4 + 6

3
= 4.

Similarly, in the conditional probability space given A, we see that X is
uniformly distributed over {1, 3, 5}, and hence

E[X | A] =
1 + 3 + 5

3
= 3.

We can compute the expected value of X using these conditional expecta-
tions; indeed, we have

E[X] = E[X | A]P[A] + E[X | A]P[A] = 4 · 1
2

+ 3 · 1
2

=
7
2
,

which agrees with the calculation in previous example. 2
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Example 6.22. Suppose that a random variable X takes the value 1 with
probability p, and 0 with probability q := 1 − p. The distribution of X is
that of a Bernoulli trial, as discussed in Example 6.3. Let us compute E[X]
and Var[X]. We have

E[X] = 1 · p+ 0 · q = p.

We also have

E[X2] = 12 · p+ 02 · q = p.

Therefore,

Var[X] = E[X2]− (E[X])2 = p− p2 = pq. 2

Example 6.23. Suppose that X1, . . . , Xn are mutually independent ran-
dom variables such that each Xi takes the value 1 with probability p and 0
with probability q := 1− p. Let us set X := X1 + · · ·+ Xn. Note that the
distribution of each Xi is that of a Bernoulli trial, as in Example 6.3, and
the distribution of X is a binomial distribution, as in Example 6.19. By the
previous example, we have E[Xi] = p and Var[Xi] = pq for i = 1, . . . , n. Let
us compute E[X] and Var[X]. By Theorem 6.6, we have

E[X] =
n∑

i=1

E[Xi] = np,

and by Theorem 6.10, and the fact that the Xi are mutually independent,
we have

Var[X] =
n∑

i=1

Var[Xi] = npq. 2

Exercise 6.18. A casino offers you the following four dice games. In each
game, you pay 15 dollars to play, and two dice are rolled. In the first game,
the house pays out four times the value of the first die (in dollars). In the
second, the house pays out twice the sum of the two dice. In the third,
the house pays the square of the first. In the fourth, the house pays the
product of the two dice. Which game should you play? That is, which game
maximizes your expected winnings?

Exercise 6.19. Suppose X and Y are independent real random variables
such that E[X] = E[Y ]. Show that

E[(X − Y )2] = Var[X] + Var[Y ].
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Exercise 6.20. Show that the variance of any 0/1-valued random variable
is at most 1/4.

Exercise 6.21. A die is tossed repeatedly until it comes up “1,” or until it
is tossed n times (whichever comes first). What is the expected number of
tosses of the die?

Exercise 6.22. Suppose that 20 percent of the students who took a certain
test were from school A and the average of their scores on the test was
65. Also, suppose that 30 percent of the students were from school B and
the average of their scores was 85. Finally, suppose that the remaining 50
percent of the students were from school C and the average of their scores
was 72. If a student is selected at random from the entire group that took
the test, what is the expected value of his score?

Exercise 6.23. An urn contains r ≥ 0 red balls and b ≥ 1 black balls.
Consider the following experiment. At each step in the experiment, a single
ball is removed from the urn, randomly chosen from among all balls that
remain in the urn: if a black ball is removed, the experiment halts, and
if a red ball is removed, the experiment continues (without returning the
red ball to the urn). Show that the expected number of steps performed is
(r + b+ 1)/(b+ 1).

6.5 Some useful bounds

In this section, we present several theorems that can be used to bound the
probability that a random variable deviates from its expected value by some
specified amount.

Theorem 6.11 (Markov’s inequality). Let X be a random variable that
takes only non-negative real values. Then for any t > 0, we have

P[X ≥ t] ≤ E[X]/t.

Proof. We have

E[X] =
∑

x

xP[X = x] =
∑
x<t

xP[X = x] +
∑
x≥t

xP[X = x].

Since X takes only non-negative values, all of the terms in the summation
are non-negative. Therefore,

E[X] ≥
∑
x≥t

xP[X = x] ≥
∑
x≥t

tP[X = x] = tP[X ≥ t]. 2
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Markov’s inequality may be the only game in town when nothing more
about the distribution of X is known besides its expected value. However,
if the variance of X is also known, then one can get a better bound.

Theorem 6.12 (Chebyshev’s inequality). Let X be a real random vari-
able. Then for any t > 0, we have

P[|X − E[X]| ≥ t] ≤ Var[X]/t2.

Proof. Let Y := (X − E[X])2. Then Y is always non-negative, and E[Y ] =
Var[X]. Applying Markov’s inequality to Y , we have

P[|X − E[X]| ≥ t] = P[Y ≥ t2] ≤ Var[X]/t2. 2

An important special case of Chebyshev’s inequality is the following. Sup-
pose that X1, . . . , Xn are pairwise independent real random variables, each
with the same distribution. Let µ be the common value of E[Xi] and ν the
common value of Var[Xi]. Set

X :=
1
n

(X1 + · · ·+Xn).

The variableX is called the sample mean ofX1, . . . , Xn. By the linearity of
expectation, we have E[X] = µ, and since the Xi are pairwise independent,
it follows from Theorem 6.10 (along with part (ii) of Theorem 6.9) that
Var[X] = ν/n. Applying Chebyshev’s inequality, for any ε > 0, we have

P[|X − µ| ≥ ε] ≤ ν

nε2
. (6.17)

The inequality (6.17) says that for all ε > 0, and for all δ > 0, there exists n0

(depending on ε and δ, as well as the variance ν) such that n ≥ n0 implies

P[|X − µ| ≥ ε] ≤ δ. (6.18)

In words:

As n gets large, the sample mean closely approximates the ex-
pected value µ with high probability.

This fact, known as the law of large numbers, justifies the usual intuitive
interpretation given to expectation.

Let us now examine an even more specialized case of the above situation.
Suppose that X1, . . . , Xn are pairwise independent random variables, each of
which takes the value 1 with probability p, and 0 with probability q := 1−p.
As before, let X be the sample mean of X1, . . . , Xn. As we calculated in
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Example 6.22, the Xi have a common expected value p and variance pq.
Therefore, by (6.17), for any ε > 0, we have

P[|X − p| ≥ ε] ≤ pq

nε2
. (6.19)

The bound on the right-hand side of (6.19) decreases linearly in n. If one
makes the stronger assumption that the Xi are mutually independent (so
that X := X1 + · · · + Xn has a binomial distribution), one can obtain a
much better bound that decreases exponentially in n:

Theorem 6.13 (Chernoff bound). Let X1, . . . , Xn be mutually indepen-
dent random variables, such that each Xi is 1 with probability p and 0 with
probability q := 1 − p. Assume that 0 < p < 1. Also, let X be the sample
mean of X1, . . . , Xn. Then for any ε > 0, we have:

(i) P[X − p ≥ ε] ≤ e−nε2/2q;

(ii) P[X − p ≤ −ε] ≤ e−nε2/2p;

(iii) P[|X − p| ≥ ε] ≤ 2 · e−nε2/2.

Proof. First, we observe that (ii) follows directly from (i) by replacing Xi

by 1−Xi and exchanging the roles of p and q. Second, we observe that (iii)
follows directly from (i) and (ii). Thus, it suffices to prove (i).

Let α > 0 be a parameter, whose value will be determined later. Define
the random variable Z := eαn(X−p). Since the function x 7→ eαnx is strictly
increasing, we haveX−p ≥ ε if and only if Z ≥ eαnε. By Markov’s inequality,
it follows that

P[X − p ≥ ε] = P[Z ≥ eαnε] ≤ E[Z]e−αnε. (6.20)

So our goal is to bound E[Z] from above.
For i = 1, . . . , n, define the random variable Zi := eα(Xi−p). Note that

Z =
∏n

i=1 Zi, that the Zi are mutually independent random variables (see
Theorem 6.5), and that

E[Zi] = eα(1−p)p+ eα(0−p)q = peαq + qe−αp.

It follows that

E[Z] = E[
∏

i

Zi] =
∏

i

E[Zi] = (peαq + qe−αp)n.

We will prove below that

peαq + qe−αp ≤ eα2q/2. (6.21)
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From this, it follows that

E[Z] ≤ eα2qn/2. (6.22)

Combining (6.22) with (6.20), we obtain

P[X − p ≥ ε] ≤ eα2qn/2−αnε. (6.23)

Now we choose the parameter α so as to minimize the quantity α2qn/2−αnε.
The optimal value of α is easily seen to be α = ε/q, and substituting this
value of α into (6.23) yields (i).

To finish the proof of the theorem, it remains to prove the inequality
(6.21). Let

β := peαq + qe−αp.

We want to show that β ≤ eα
2q/2, or equivalently, that log β ≤ α2q/2. We

have

β = eαq(p+ qe−α) = eαq(1− q(1− e−α)),

and taking logarithms and applying parts (i) and (ii) of §A1, we obtain

log β = αq+log(1−q(1−e−α)) ≤ αq−q(1−e−α) = q(e−α +α−1) ≤ qα2/2.

This establishes (6.21) and completes the proof of the theorem. 2

Thus, the Chernoff bound is a quantitatively superior version of the law
of large numbers, although its range of application is clearly more limited.

Example 6.24. Suppose we toss 10,000 coins. The expected number of
heads is 5,000. What is an upper bound on the probability α that we get
6,000 or more heads? Using Markov’s inequality, we get α ≤ 5/6. Using
Chebyshev’s inequality, and in particular, the inequality (6.19), we get

α ≤ 1/4
10410−2

=
1

400
.

Finally, using the Chernoff bound, we obtain

α ≤ e−10410−2/2(0.5) = e−100 ≈ 10−43.4. 2

Exercise 6.24. You are given a biased coin. You know that if tossed, it will
come up heads with probability at least 51%, or it will come up tails with
probability at least 51%. Design an experiment that attempts to determine
the direction of the bias (towards heads or towards tails). The experiment
should work by flipping the coin some number t times, and it should correctly
determine the direction of the bias with probability at least 99%. Try to
make t as small as possible.
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6.6 The birthday paradox

This section discusses a number of problems related to the following ques-
tion: how many people must be in a room before there is a good chance
that two of them were born on the same day of the year? The answer is
surprisingly few, whence the “paradox.”

To answer this question, we index the people in the room with integers
1, . . . , k, where k is the number of people in the room. We abstract the
problem a bit, and assume that all years have the same number of days,
say n— setting n = 365 corresponds to the original problem, except that
leap years are not handled correctly, but we shall ignore this detail. For
i = 1, . . . , k, let Xi denote the day of the year on which i’s birthday falls.
Let us assume that birthdays are uniformly distributed over {0, . . . , n− 1};
this assumption is actually not entirely realistic, as it is well known that
people are somewhat more likely to be born in some months than in others.

So for any i = 1, . . . , k and x = 0, . . . , n− 1, we have P[Xi = x] = 1/n.
Let α be the probability that no two persons share the same birthday, so

that 1− α is the probability that there is a pair of matching birthdays. We
would like to know how big k must be relative to n so that α is not too
large, say, at most 1/2.

We can compute α as follows, assuming the Xi are mutually independent.
There are a total of nk sequences of integers (x1, . . . , xk), with each xi ∈

{0, . . . , n−1}. Among these, there are a total of n(n−1) · · · (n−k+1) that
contain no repetitions: there are n choices for x1, and for any fixed value of
x1, there are n− 1 choices for x2, and so on. Therefore

α = n(n−1) · · · (n−k+1)/nk =
(

1− 1
n

)(
1− 2

n

)
· · ·

(
1− k − 1

n

)
. (6.24)

Using the part (i) of §A1, we obtain

α ≤ e−
Pk−1

i=1 i/n = e−k(k−1)/2n.

So if k(k − 1) ≥ (2 log 2)n, we have α ≤ 1/2. Thus, when k is at least a
small constant times n1/2, we have α ≤ 1/2, so the probability that two
people share the same birthday is at least 1/2. For n = 365, k ≥ 23 suffices.
Indeed, one can simply calculate α in this case numerically from equation
(6.24), obtaining α ≈ 0.493. Thus, if there are 23 people in the room, there
is about a 50-50 chance that two people have the same birthday.

The above analysis assumed the Xi are mutually independent. However,
we can still obtain useful upper bounds for α under much weaker indepen-
dence assumptions.
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For i = 1, . . . , k and j = i+ 1, . . . , k, let us define the indicator variable

Wij :=
{

1 if Xi = Xj ,
0 if Xi 6= Xj .

If we assume that the Xi are pairwise independent, then

P[Wij = 1] = P[Xi = Xj ] =
n−1∑
x=0

P[Xi = x ∧Xj = x]

=
n−1∑
x=0

P[Xi = x]P[Xj = x] =
n−1∑
x=0

1/n2 = 1/n.

We can compute the expectation and variance (see Example 6.22):

E[Wij ] =
1
n
, Var[Wij ] =

1
n

(1− 1
n

).

Now consider the random variable

W :=
k∑

i=1

k∑
j=i+1

Wij ,

which represents the number of distinct pairs of people with the same birth-
day. There are k(k− 1)/2 terms in this sum, so by the linearity of expecta-
tion, we have

E[W ] =
k(k − 1)

2n
.

Thus, for k(k − 1) ≥ 2n, we “expect” there to be at least one pair of
matching birthdays. However, this does not guarantee that the probability
of a matching pair of birthdays is very high, assuming just pairwise inde-
pendence of the Xi. For example, suppose that n is prime and the Xi are
a subset of the family of pairwise independent random variables defined in
Example 6.17. That is, each Xi is of the form aiX + Y , where X and Y

are uniformly and independently distributed modulo n. Then in fact, either
all the Xi are distinct, or they are all equal, where the latter event occurs
exactly when X = [0]n, and so with probability 1/n— “when it rains, it
pours.”

To get a useful upper bound on the probability α that there are no match-
ing birthdays, it suffices to assume that the Xi are 4-wise independent. In
this case, it is easy to verify that the variables Wij are pairwise indepen-
dent, since any two of the Wij are determined by at most four of the Xi.
Therefore, in this case, the variance of the sum is equal to the sum of the
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variances, and so

Var[W ] =
k(k − 1)

2n
(1− 1

n
) ≤ E[W ].

Furthermore, by Chebyshev’s inequality,

α = P[W = 0] ≤ P[|W − E[W ]| ≥ E[W ]]

≤ Var[W ]/E[W ]2 ≤ 1/E[W ] =
2n

k(k − 1)
.

Thus, if k(k − 1) ≥ 4n, then α ≤ 1/2.

In many practical applications, it is more important to bound α from
below, rather than from above; that is, to bound from above the probability
1 − α that there are any collisions. For this, pairwise independence of the
Xi suffices, since than we have P[Wij = 1] = 1/n, and by (6.5), we have

1− α ≤
k∑

i=1

k∑
j=i+1

P[Wij = 1] =
k(k − 1)

2n
,

which is at most 1/2 provided k(k − 1) ≤ n.

Exercise 6.25. Let α1, . . . , αn be real numbers with
∑n

i=1 αi = 1. Show
that

0 ≤
n∑

i=1

(αi − 1/n)2 =
n∑

i=1

α2
i − 1/n,

and in particular,
n∑

i=1

α2
i ≥ 1/n.

Exercise 6.26. Let X be a set of size n ≥ 1, and let X and X ′ be indepen-
dent random variables, taking values in X , and with the same distribution.
Show that

P[X = X ′] =
∑
x∈X

P[X = x]2 ≥ 1
n
.

Exercise 6.27. Let X be a set of size n ≥ 1, and let x0 be an arbitrary,
fixed element of X . Consider a random experiment in which a function F is
chosen uniformly from among all nn functions from X into X . Let us define
random variables Xi, for i = 0, 1, 2, . . . , as follows:

X0 := x0, Xi+1 := F (Xi) (i = 0, 1, 2, . . .).



124 Finite and discrete probability distributions

Thus, the value of Xi is obtained by applying the function F a total of i
times to the starting value x0. Since X has size n, the sequence {Xi} must
repeat at some point; that is, there exists a positive integer k (with k ≤ n)
such that Xk = Xi for some i = 0, . . . , k− 1. Define the random variable K
to be the smallest such value k.

(a) Show that for any i ≥ 0 and any fixed values of x1, . . . , xi ∈ X such
that x0, x1, . . . , xi are distinct, the conditional distribution of Xi+1

given that X1 = x1, . . . , Xi = xi is uniform over X .

(b) Show that for any integer k ≥ 1, we have K ≥ k if and only if
X0, X1, . . . , Xk−1 take on distinct values.

(c) From parts (a) and (b), show that for any k = 1, . . . , n, we have

P[K ≥ k | K ≥ k − 1] = 1− (k − 1)/n,

and conclude that

P[K ≥ k] =
k−1∏
i=1

(1− i/n) ≤ e−k(k−1)/2n.

(d) Show that
∞∑

k=1

e−k(k−1)/2n = O(n1/2)

and then conclude from part (c) that

E[K] =
n∑

k=1

P[K ≥ k] ≤
∞∑

k=1

e−k(k−1)/2n = O(n1/2).

(e) Modify the above argument to show that E[K] = Ω(n1/2).

Exercise 6.28. The setup for this exercise is identical to that of the previous
exercise, except that now, the function F is chosen uniformly from among
all n! permutations of X .

(a) Show that if K = k, then Xk = X0.

(b) Show that for any i ≥ 0 and any fixed values of x1, . . . , xi ∈ X such
that x0, x1, . . . , xi are distinct, the conditional distribution of Xi+1

given that X1 = x1, . . . , Xi = xi is uniform over X \ {x1, . . . , xi}.
(c) Show that for any k = 2, . . . , n, we have

P[K ≥ k | K ≥ k − 1] = 1− 1
n− k + 2

,
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and conclude that for all k = 1, . . . , n, we have

P[K ≥ k] =
k−2∏
i=0

(
1− 1

n− i

)
= 1− k − 1

n
.

(d) From part (c), show that K is uniformly distributed over {1, . . . , n},
and in particular,

E[K] =
n+ 1

2
.

6.7 Hash functions

In this section, we apply the tools we have developed thus far to a par-
ticularly important area of computer science: the theory and practice of
hashing.

The scenario is as follows. We have finite, non-empty sets A and Z, with
|A| = k and |Z| = n, and a finite, non-empty set H of hash functions, each
of which map elements of A into Z. More precisely, each element h ∈ H
defines a function that maps a ∈ A to an element z ∈ Z, and we write
z = h(a); the value z is called the hash code of a (under h), and we say
that a hashes to z (under h). Note that two distinct elements of H may
happen to define the same function. We call H a family of hash functions
(from A to Z).

Let H be a random variable whose distribution is uniform on H. For any
a ∈ A, H(a) denotes the random variable whose value is z = h(a) when
H = h. For any ` = 1, . . . , k, we say that H is an `-wise independent
family of hash functions if each H(a) is uniformly distributed over Z, and the
collection of all H(a) is `-wise independent; in case ` = 2, we say that H is
a pairwise independent family of hash functions. Pairwise independence
is equivalent to saying that for all a, a′ ∈ A, with a 6= a′, and all z, z′ ∈ Z,

P[H(a) = z ∧H(a′) = z′] =
1
n2
.

Example 6.25. Examples 6.17 and 6.18 provide explicit constructions for
pairwise independent families of hash functions. In particular, from the
discussion in Example 6.17, if n is prime, and we take A := Zn, Z := Zn,
and H := {hx,y : x, y ∈ Zn}, where for hx,y ∈ H and a ∈ A we define
hx,y(a) := ax+y, then H is a pairwise independent family of hash functions
from A to Z.

Similarly, Example 6.18 yields a pairwise independent family of hash func-
tions from A := Z×t

n to Z := Zn, with H := {hx1,...,xt,y : x1, . . . , xt, y ∈ Zn},



126 Finite and discrete probability distributions

where for hx1,...,xt,y ∈ H and (a1, . . . , at) ∈ A, we define

hx1,...,xt,y(a1, . . . , at) := a1x1 + · · ·+ atxt + y.

In practice, the inputs to such a hash function may be long bit strings, which
we chop into small pieces so that each piece can be viewed as an element of
Zn. 2

6.7.1 Hash tables

Pairwise independent families of hash functions may be used to implement
a data structure known as a hash table, which in turn may be used to
implement a dictionary.

Assume that H is a family of hash functions from A to Z, where |A| = k

and |Z| = n. A hash function is chosen at random from H; an element
a ∈ A is inserted into the hash table by storing the value of a into a bin
indexed by the hash code of a; likewise, to see if a particular value a ∈ A
is stored in the hash table, one must search in the bin indexed by the hash
code of a.

So as to facilitate fast storage and retrieval, one typically wants the ele-
ments stored in the hash table to be distributed in roughly equal proportions
among all the bins.

Assuming that H is a pairwise independent family of hash functions, one
can easily derive some useful results, such as the following:

• If the hash table holds q values, then for any value a ∈ A, the expected
number of other values that are in the bin indexed by a’s hash code
is at most q/n. This result bounds the expected amount of “work”
we have to do to search for a value in its corresponding bin, which
is essentially equal to the size of the bin. In particular, if q = O(n),
then the expected amount of work is constant. See Exercise 6.32
below.

• If the table holds q values, with q(q − 1) ≤ n, then with probability
at least 1/2, each value lies in a distinct bin. This result is useful if
one wants to find a “perfect” hash function that hashes q fixed values
to distinct bins: if n is sufficiently large, we can just choose hash
functions at random until we find one that works. See Exercise 6.33
below.

• If the table holds n values, then the expected value of the maximum
number of values in any bin is O(n1/2). See Exercise 6.34 below.

Results such as these, and others, can be obtained using a broader notion



6.7 Hash functions 127

of hashing called universal hashing. We call H a universal family of hash
functions if for all a, a′ ∈ A, with a 6= a′, we have

P[H(a) = H(a′)] ≤ 1
n
.

Note that the pairwise independence property implies the universal prop-
erty (see Exercise 6.29 below). There are even weaker notions that are
relevant in practice; for example, in some applications, it is sufficient to
require that P[H(a) = H(a′)] ≤ c/n for some constant c.

Exercise 6.29. Show that any pairwise independent family of hash func-
tions is also a universal family of hash functions.

Exercise 6.30. Let A := Z×(t+1)
n and Z := Zn, where n is prime. Let

H := {hx1,...,xt : x1, . . . , xt ∈ Zn} be a family of hash functions from A to
Z, where for hx1,...,xt ∈ H, and for (a0, a1, . . . , at) ∈ A, we define

hx1,...,xt(a0, a1, . . . , at) := a0 + a1x1 + · · ·+ atxt.

Show that H is universal, but not pairwise independent.

Exercise 6.31. Let k be a prime and let n be any positive integer. Let
A := {0, . . . , k − 1} and Z := {0, . . . , n− 1}. Let

H := {hx,y : x = 1, . . . , k − 1, y = 0, . . . , k − 1},

be a family of hash functions from A to Z, where for hx,y ∈ H and for a ∈ A,
we define

hx,y(a) := ((ax+ y) mod k) mod n.

Show that H is universal. Hint: first show that for any a, a′ ∈ A with a 6= a′,
the number of h ∈ H such that h(a) = h(a′) is equal to the number of pairs
of integers (r, s) such that

0 ≤ r < k, 0 ≤ s < k, r 6= s, and r ≡ s (mod n).

In the following three exercises, assume that H is a universal family of
hash functions from A to Z, where |A| = k and |Z| = n, and that H is a
random variable uniformly distributed over H.

Exercise 6.32. Let a1, . . . , aq be distinct elements of A, and let a ∈ A.
Define L to be the number of indices i = 1, . . . , q such that H(ai) = H(a).
Show that

E[L] ≤
{

1 + (q − 1)/n if a ∈ {a1, . . . , aq};
q/n otherwise.
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Exercise 6.33. Let a1, . . . , aq be distinct elements of A, and assume that
q(q − 1) ≤ n. Show that the probability that H(ai) = H(aj) for some i, j
with i 6= j, is at most 1/2.

Exercise 6.34. Assume k ≥ n, and let a1, . . . , an be distinct elements of
A. For z ∈ Z, define the random variable Bz := {ai : H(ai) = z}. Define
the random variable M := max{|Bz| : z ∈ Z}. Show that E[M ] = O(n1/2).

Exercise 6.35. A family H of hash functions from A to Z is called ε-
universal if for H uniformly distributed over H, and for all a, a′ ∈ A with
a 6= a′, we have P[H(a) = H(a′)] ≤ ε. Show that if H is ε-universal, then we
must have

ε ≥ 1
|Z|
− 1
|A|

.

Hint: using Exercise 6.26, first show that if H,A,A′ are mutually inde-
pendent random variables, with H uniformly distributed over H, and A

and A′ uniformly distributed over A, then P[A 6= A′ ∧ H(A) = H(A′)] ≥
1/|Z| − 1/|A|.

6.7.2 Message authentication

Pairwise independent families of hash functions may be used to implement
a message authentication scheme, which is a mechanism to detect if
a message has been tampered with in transit between two parties. Unlike
an error correcting code (such as the one discussed in §4.5.1), a message
authentication scheme should be effective against arbitrary tampering.

As above, assume that H is a family of hash functions from A to Z, where
|A| = k and |Z| = n. Suppose that Alice and Bob somehow agree upon a
hash function chosen at random fromH. At some later time, Alice transmits
a message a ∈ A to Bob over an insecure network. In addition to sending
a, Alice also sends the hash code z of a. Upon receiving a pair (a, z), Bob
checks that the hash code of a is indeed equal to z: if so, he accepts the
message as authentic (i.e., originating from Alice); otherwise, he rejects the
message.

Now suppose that an adversary is trying to trick Bob into accepting an
inauthentic message (i.e., one not originating from Alice). Assuming that
H is a pairwise independent family of hash functions, it is not too hard
to see that the adversary can succeed with probability no better than 1/n,
regardless of the strategy or computing power of the adversary. Indeed, on
the one hand, suppose the adversary gives Bob a pair (a′, z′) at some time
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before Alice sends her message. In this case, the adversary knows nothing
about the hash function, and so the correct value of the hash code of a′

is completely unpredictable: it is equally likely to be any element of Z.
Therefore, no matter how clever the adversary is in choosing a′ and z′, Bob
will accept (a′, z′) as authentic with probability only 1/n. On the other hand,
suppose the adversary waits until Alice sends her message, intercepting the
message/hash code pair (a, z) sent by Alice, and gives Bob a pair (a′, z′),
where a′ 6= a, instead of the pair (a, z). Again, since the adversary does not
know anything about the hash function other than the fact that the hash
code of a is equal to z, the correct hash code of a′ is completely unpredictable,
and again, Bob will accept (a′, z′) as authentic with probability only 1/n.

One can easily make n large enough so that the probability that an ad-
versary succeeds is so small that for all practical purposes it is impossible
to trick Bob (e.g., n ≈ 2100).

More formally, and more generally, one can define an ε-forgeable mes-
sage authentication scheme to be a family H of hash functions from A
to Z with the following property: if H is uniformly distributed over H, then

(i) for all a ∈ A and z ∈ Z, we have P[H(a) = z] ≤ ε, and

(ii) for all a ∈ A and all functions f : Z → A and g : Z → Z, we have

P[A′ 6= a ∧H(A′) = Z ′] ≤ ε,

where Z := H(a), A′ := f(Z), and Z ′ := g(Z).

Intuitively, part (i) of this definition says that it is impossible to guess the
hash code of any message with probability better than ε; further, part (ii)
of this definition says that even after seeing the hash code of one message, it
is impossible to guess the hash code of a different message with probability
better than ε, regardless the choice of the first message (i.e., the value a) and
regardless of the strategy used to pick the second message and its putative
hash code, given the hash code of the first message (i.e., the functions f and
g).

Exercise 6.36. Suppose that a family H of hash functions from A to Z is
an ε-forgeable message authentication scheme. Show that ε ≥ 1/|Z|.

Exercise 6.37. Suppose that H is a family of hash functions from A to Z
and that |A| > 1. Show that if H satisfies part (ii) of the definition of an
ε-forgeable message authentication scheme, then it also satisfies part (i) of
the definition.



130 Finite and discrete probability distributions

Exercise 6.38. Let H be a family of hash functions from A to Z. For
ε ≥ 0, we call H pairwise ε-predictable if the following holds: for H
uniformly distributed over H, for all a, a′ ∈ A, and for all z, z′ ∈ Z, we have
P[H(a) = z] ≤ ε and

P[H(a) = z] > 0 and a′ 6= a implies P[H(a′) = z′ | H(a) = z] ≤ ε.

(a) Show that if H is pairwise ε-predictable, then it is an ε-forgeable
message authentication scheme.

(b) Show that if H is pairwise independent, then it is pairwise 1/|Z|-
predictable. Combining this with part (a), we see that if H is pair-
wise independent, then it is a 1/|Z|-forgeable message authentication
scheme (which makes rigorous the intuitive argument given above).

(c) Give an example of a family of hash functions that is an ε-forgeable
message authentication scheme for some ε < 1, but is not pairwise
ε-predictable for any ε < 1.

Exercise 6.39. Give an example of an ε-forgeable message authentication
scheme, where ε is very small, but where if Alice authenticates two distinct
messages using the same hash function, an adversary can easily forge the
hash code of any message he likes (after seeing Alice’s two messages and their
hash codes). This shows that, as we have defined a message authentication
scheme, Alice should only authenticate a single message per hash function
(t messages may be authenticated using t hash functions).

Exercise 6.40. Let H be an ε-universal family of hash functions from A to
Y (see Exercise 6.35), and let H′ be a pairwise independent family of hash
functions from Y to Z. Define the composed family H′ ◦H of hash functions
from A to Z asH′◦H := {φh′,h : h′ ∈ H′, h ∈ H}, where φh′,h(a) := h′(h(a))
for φh′,h ∈ H′◦H and for a ∈ A. Show that H′◦H is an (ε+1/|Z|)-forgeable
message authentication scheme.

6.8 Statistical distance

This section discusses a useful measure “distance” between two random
variables. Although important in many applications, the results of this
section (and the next) will play only a very minor role in the remainder of
the text.

Let X and Y be random variables which both take values on a finite set
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V. We define the statistical distance between X and Y as

∆[X;Y ] :=
1
2

∑
v∈V
|P[X = v]− P[Y = v]|.

Theorem 6.14. For random variables X,Y, Z, we have

(i) 0 ≤ ∆[X;Y ] ≤ 1,

(ii) ∆[X;X] = 0,

(iii) ∆[X;Y ] = ∆[Y ;X], and

(iv) ∆[X;Z] ≤ ∆[X;Y ] + ∆[Y ;Z].

Proof. Exercise. 2

Note that ∆[X;Y ] depends only on the individual distributions of X and
Y , and not on the joint distribution of X and Y . As such, one may speak of
the statistical distance between two distributions, rather than between two
random variables.

Example 6.26. Suppose X has the uniform distribution on {1, . . . , n}, and
Y has the uniform distribution on {1, . . . , n−k}, where 0 ≤ k ≤ n−1. Let us
compute ∆[X;Y ]. We could apply the definition directly; however, consider
the following graph of the distributions of X and Y :

1/n

1/(n− k)

0 n− k n

A

B C

The statistical distance between X and Y is just 1/2 times the area of
regions A and C in the diagram. Moreover, because probability distributions
sum to 1, we must have

area of B + area of A = 1 = area of B + area of C,

and hence, the areas of region A and region C are the same. Therefore,

∆[X;Y ] = area of A = area of C = k/n. 2

The following characterization of statistical distance is quite useful:

Theorem 6.15. Let X and Y be random variables taking values on a set
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V. For any W ⊆ V, we have

∆[X;Y ] ≥ |P[X ∈ W]− P[Y ∈ W]|,

and equality holds if W is either the set of all v ∈ V such that P[X = v] <
P[Y = v], or the complement of this set.

Proof. Suppose we partition the set V into two sets: the set V0 consisting
of those v ∈ V such that P[X = v] < P[Y = v], and the set V1 consisting of
those v ∈ V such that P[X = v] ≥ P[Y = v]. Consider the following rough
graph of the distributions of X and Y , where the elements of V0 are placed
to the left of the elements of V1:

A

B

C

X

Y

V0 V1

Now, as in Example 6.26,

∆[X;Y ] = area of A = area of C.

Further, consider any subset W of V. The quantity |P[X ∈ W]−P[Y ∈ W]|
is equal to the absolute value of the difference of the area of the subregion
of A that lies above W and the area of the subregion of C that lies above
W. This quantity is maximized when W = V0 or W = V1, in which case it
is equal to ∆[X;Y ]. 2

We can restate Theorem 6.15 as follows:

∆[X;Y ] = max{|P[φ(X)]− P[φ(Y )]| : φ is a predicate on V}.

This implies that when ∆[X;Y ] is very small, then for any predicate φ, the
events φ(X) and φ(Y ) occur with almost the same probability. Put another
way, there is no “statistical test” that can effectively distinguish between
the distributions of X and Y . For many applications, this means that the
distribution of X is “for all practical purposes” equivalent to that of Y , and
hence in analyzing the behavior of X, we can instead analyze the behavior
of Y , if that is more convenient.
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Theorem 6.16. Let X,Y be random variables taking values on a set V, and
let f be a function from V into a set W. Then ∆[f(X); f(Y )] ≤ ∆[X;Y ].

Proof. By Theorem 6.15, for any subset W ′ of W, we have

|P[f(X) ∈ W ′]− P[f(Y ) ∈ W ′]| =
|P[X ∈ f−1(W ′)]− P[Y ∈ f−1(W ′)]| ≤ ∆[X;Y ].

In particular, again by Theorem 6.15,

∆[f(X); f(Y )] = |P[f(X) ∈ W ′]− P[f(Y ) ∈ W ′]|

for some W ′. 2

Example 6.27. Let X be uniformly distributed on the set {0, . . . , n− 1},
and let Y be uniformly distributed on the set {0, . . . ,m−1}, for m ≥ n. Let
f(y) := y mod n. We want to compute an upper bound on the statistical
distance between X and f(Y ). We can do this as follows. Let m = qn− r,
where 0 ≤ r < n, so that q = dm/ne. Also, let Z be uniformly distributed
over {0, . . . , qn−1}. Then f(Z) is uniformly distributed over {0, . . . , n−1},
since every element of {0, . . . , n − 1} has the same number (namely, q) of
pre-images under f which lie in the set {0, . . . , qn − 1}. Therefore, by the
previous theorem,

∆[X; f(Y )] = ∆[f(Z); f(Y )] ≤ ∆[Z;Y ],

and as we saw in Example 6.26,

∆[Z;Y ] = r/qn < 1/q ≤ n/m.

Therefore,

∆[X; f(Y )] < n/m. 2

We close this section with two useful theorems.

Theorem 6.17. Let X and Y be random variables taking values on a set V,
and let W be a random variable taking values on a set W. Further, suppose
that X and W are independent, and that Y and W are independent. Then
the statistical distance between (X,W ) and (Y,W ) is equal to the statistical
distance between X and Y ; that is,

∆[X,W ;Y,W ] = ∆[X,Y ].
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Proof. From the definition of statistical distance,

2∆[X,W ;Y,W ] =
∑
v,w

|P[X = v ∧W = w]− P[Y = v ∧W = w]|

=
∑
v,w

|P[X = v]P[W = w]− P[Y = v]P[W = w]|

(by independence)

=
∑
v,w

P[W = w]|P[X = v]− P[Y = v]|

= (
∑
w

P[W = w])(
∑

v

|P[X = v]− P[Y = v]|)

= 1 · 2∆[X;Y ]. 2

Theorem 6.18. Let U1, . . . , U`, V1, . . . , V` be mutually independent random
variables. We have

∆[U1, . . . , U`;V1, . . . , V`] ≤
∑̀
i=1

∆[Ui;Vi].

Proof. We introduce random variables W0, . . . ,W`, defined as follows:

W0 := (U1, . . . , U`),

Wi := (V1, . . . , Vi, Ui+1, . . . , U`) for i = 1, . . . , `− 1, and

W` := (V1, . . . , V`).

By definition,

∆[U1, . . . , U`;V1, . . . , V`] = ∆[W0;W`].

Moreover, by part (iv) of Theorem 6.14, we have

∆[W0;W`] ≤
∑̀
i=1

∆[Wi−1;Wi].

Now consider any fixed index i = 1, . . . , `. By Theorem 6.17, we have

∆[Wi−1;Wi] = ∆[ Ui, (V1, . . . , Vi−1, Ui+1, . . . , U`);

Vi, (V1, . . . , Vi−1, Ui+1, . . . , U`)]

= ∆[Ui;Vi].

The theorem now follows immediately. 2

The technique used in the proof of the previous theorem is sometimes
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called a hybrid argument, as one considers the sequence of “hybrid” vari-
ables W0,W1, . . . ,W`, and shows that the distance between each consecutive
pair of variables is small.

Exercise 6.41. Let X and Y be independent random variables, each uni-
formly distributed over Zp, where p is prime. Calculate ∆[X,Y ;X,XY ].

Exercise 6.42. Let n be a large integer that is the product of two distinct
primes of roughly the same bit length. Let X be uniformly distributed over
Zn, and let Y be uniformly distributed over Z∗n. Show that ∆[X;Y ] =
O(n−1/2).

Exercise 6.43. Let V be a finite set, and consider any function φ : V →
{0, 1}. Let B be a random variable uniformly distributed over {0, 1}, and
for b = 0, 1, let Xb be a random variable taking values in V, and assume
that Xb and B are independent. Show that

|P[φ(XB) = B]− 1
2 | =

1
2 |P[φ(X0) = 1]− P[φ(X1) = 1]| ≤ 1

2∆[X0;X1].

Exercise 6.44. Let X,Y be random variables on a probability distribution,
and let B1, . . . ,Bn be events that partition of the underlying sample space,
where each Bi occurs with non-zero probability. For i = 1, . . . , n, let Xi

and Yi denote the random variables X and Y in the conditional probability
distribution given Bi; that is, P[Xi = v] = P[X = v | Bi], and P[Yi = v] =
P[Y = v | Bi]. Show that

∆[X;Y ] ≤
n∑

i=1

∆[Xi;Yi]P[Bi].

Exercise 6.45. Let X and Y be random variables that take the same value
unless a certain event F occurs. Show that ∆[X;Y ] ≤ P[F ].

Exercise 6.46. Let M be a large integer. Consider three random exper-
iments. In the first, we generate a random integer n between 1 and M ,
and then a random integer w between 1 and n. In the second, we gen-
erate a random integer n between 2 and M , and then generate a random
integer w between 1 and n. In the third, we generate a random integer
n between 2 and M , and then a random integer w between 2 and n. For
i = 1, 2, 3, let Xi denote the outcome (n,w) of the ith experiment. Show
that ∆[X1;X2] = O(1/M) and ∆[X2;X3] = O(logM/M), and conclude
that ∆[X1;X3] = O(logM/M).
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Exercise 6.47. Show that Theorem 6.17 is not true if we drop the inde-
pendence assumptions.

Exercise 6.48. Show that the hypothesis of Theorem 6.18 can be weakened:
all one needs to assume is that X1, . . . , X` are mutually independent, and
that Y1, . . . , Y` are mutually independent.

Exercise 6.49. Let Y1, . . . , Y` be mutually independent random variables,
where each Yi is uniformly distributed on {0, . . . ,m − 1}. For i = 1, . . . , `,
define Zi :=

∑i
j=1 jYj . Let n be a prime greater than `. Let S be any finite

subset of Z×`. Let A be the event that for some (a1, . . . , a`) ∈ S, we have
Zi ≡ ai (mod n) for i = 1, . . . , `. Show that

P[A] ≤ |S|/n` + `n/m.

Exercise 6.50. Let X be a set of size n ≥ 1. Let F be a random function
from X into X . Let G be a random permutation of X . Let x1, . . . , x` be
distinct, fixed elements of X . Show that

∆[F (x1), . . . , F (x`);G(x1), . . . , G(x`)] ≤
`(`− 1)

2n
.

Exercise 6.51. Let H be a family hash functions from A to Z such that
(i) each h ∈ H maps A injectively into Z, and (ii) there exists ε, with
0 ≤ ε ≤ 1, such that ∆[H(a);H(a′)] ≤ ε for all a, a′ ∈ A, where H is
uniformly distributed over H. Show that |H| ≥ (1− ε)|A|.

6.9 Measures of randomness and the leftover hash lemma (∗)
In this section, we discuss different ways to measure “how random” a prob-
ability distribution is, and relations among them. Consider a distribution
defined on a finite sample space V. In some sense, the “most random” dis-
tribution on V is the uniform distribution, while the least random would be
a “point mass” distribution, that is, a distribution where one point v ∈ V in
the sample space has probability 1, and all other points have probability 0.

We define three measures of randomness. Let X be a random variable
taking values on a set V of size N .

1. We say X is δ-uniform on V if the statistical distance between X

and the uniform distribution on V is equal to δ; that is,

δ =
1
2

∑
v∈V
|P[X = v]− 1/N |.
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2. The guessing probability γ(X) of X is defined to be

γ(X) := max{P[X = v] : v ∈ V}.

3. The collision probability κ(X) of X is defined to be

κ(X) :=
∑
v∈V

P[X = v]2.

Observe that if X is uniformly distributed on V, then it is 0-uniform on V,
and γ(X) = κ(X) = 1/N. Also, if X has a point mass distribution, then it is
(1−1/N)-uniform on V, and γ(X) = κ(X) = 1. The quantity log2(1/γ(X))
is sometimes called the min entropy of X, and the quantity log2(1/κ(X)) is
sometimes called the Renyi entropy of X. The collision probability κ(X)
has the following interpretation: if X and X ′ are identically distributed
independent random variables, then κ(X) = P[X = X ′] (see Exercise 6.26).

We first state some easy inequalities:

Theorem 6.19. Let X be a random variable taking values on a set V of
size N , such that X is δ-uniform on V, γ := γ(X), and κ := κ(X). Then
we have:

(i) κ ≥ 1/N ;

(ii) γ2 ≤ κ ≤ γ ≤ 1/N + δ.

Proof. Part (i) is immediate from Exercise 6.26. The other inequalities are
left as easy exercises. 2

This theorem implies that the collision and guessing probabilities are min-
imal for the uniform distribution, which perhaps agrees with ones intuition.

While the above theorem implies that γ and κ are close to 1/N when δ is
small, the following theorem provides a converse of sorts:

Theorem 6.20. If X is δ-uniform on V, κ := κ(X), and N := |V|, then

κ ≥ 1 + 4δ2

N
.

Proof. We may assume that δ > 0, since otherwise the theorem is already
true, simply from the fact that κ ≥ 1/N .

For v ∈ V, let pv := P[X = v]. We have δ = 1
2

∑
v |pv − 1/N |, and hence
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1 =
∑

v qv, where qv := |pv − 1/N |/(2δ). So we have

1
N
≤

∑
v

q2
v (by Exercise 6.25)

=
1

4δ2

∑
v

(pv − 1/N)2

=
1

4δ2
(
∑

v

p2
v − 1/N) (again by Exercise 6.25)

=
1

4δ2
(κ− 1/N),

from which the theorem follows immediately. 2

We are now in a position to state and prove a very useful result which,
intuitively, allows us to convert a “low quality” source of randomness into
a “high quality” source of randomness, making use of a universal family of
hash functions (see §6.7.1).

Theorem 6.21 (Leftover hash lemma). Let H be a universal family of
hash functions from A to Z, where Z is of size n. Let H denote a random
variable with the uniform distribution on H, and let A denote a random
variable taking values in A, and with H,A independent. Let κ := κ(A).
Then (H,H(A)) is δ-uniform on H×Z, where

δ ≤
√
nκ/2.

Proof. Let Z denote a random variable uniformly distributed on Z, with
H,A,Z mutually independent. Let m := |H| and δ := ∆[H,H(A);H,Z].

Let us compute the collision probability κ(H,H(A)). Let H ′ have the
same distribution as H and A′ have the same distribution as A, with
H,H ′, A,A′ mutually independent. Then

κ(H,H(A)) = P[H = H ′ ∧H(A) = H ′(A′)]

= P[H = H ′]P[H(A) = H(A′)]

=
1
m

(
P[H(A) = H(A′) | A = A′]P[A = A′] +

P[H(A) = H(A′) | A 6= A′]P[A 6= A′]
)

≤ 1
m

(P[A = A′] + P[H(A) = H(A′) | A 6= A′])
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≤ 1
m

(κ+ 1/n)

=
1
mn

(nκ+ 1).

Applying Theorem 6.20 to the random variable (H,H(A)), which takes
values on the set H×Z of size N := mn, we see that 4δ2 ≤ nκ, from which
the theorem immediately follows. 2

Example 6.28. Suppose A is uniformly distributed over a subset A′ of A,
where |A′| ≥ 2160, so that κ(A) ≤ 2−160. Suppose that H is a universal
family of hash functions from A to Z, where |Z| ≤ 264. If H is uniformly
distributed over H, independently of A, then the leftover hash lemma says
that (H,H(A)) is δ-uniform on H×Z, with

δ ≤
√

2642−160/2 = 2−49. 2

The leftover hash lemma allows one to convert “low quality” sources of
randomness into “high quality” sources of randomness. Suppose that to
conduct an experiment, we need to sample a random variable Z whose dis-
tribution is uniform on a set Z of size n, or at least δ-uniform for a small
value of δ. However, we may not have direct access to a source of “real”
randomness whose distribution looks anything like that of the desired uni-
form distribution, but rather, only to a “low quality” source of randomness.
For example, one could model various characteristics of a person’s typing
at the keyboard, or perhaps various characteristics of the internal state of a
computer (both its software and hardware) as a random process. We can-
not say very much about the probability distributions associated with such
processes, but perhaps we can conservatively estimate the collision or guess-
ing probability associated with these distributions. Using the leftover hash
lemma, we can hash the output of this random process, using a suitably
generated random hash function. The hash function acts like a “magnifying
glass”: it “focuses” the randomness inherent in the “low quality” source
distribution onto the set Z, obtaining a “high quality,” nearly uniform, dis-
tribution on Z.

Of course, this approach requires a random hash function, which may
be just as difficult to generate as a random element of Z. The following
theorem shows, however, that we can at least use the same “magnifying
glass” many times over, with the statistical distance from uniform of the
output distribution increasing linearly in the number of applications of the
hash function.
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Theorem 6.22. Let H be a universal family of hash functions from A to Z,
where Z is of size n. Let H denote a random variable with the uniform distri-
bution on H, and let A1, . . . , A` denote random variables taking values in A,
with H,A1, . . . , A` mutually independent. Let κ := max{κ(A1), . . . , κ(A`)}.
Then (H,H(A1), . . . ,H(A`)) is δ′-uniform on H×Z×`, where

δ′ ≤ `
√
nκ/2.

Proof. Let Z1, . . . , Z` denote random variables with the uniform distribution
on Z, with H,A1, . . . , A`, Z1, . . . , Z` mutually independent. We shall make a
hybrid argument (as in the proof of Theorem 6.18). Define random variables
W0,W1, . . . ,W` as follows:

W0 := (H,H(A1), . . . ,H(A`)),

Wi := (H,Z1, . . . , Zi,H(Ai+1), . . . ,H(A`)) for i = 1, . . . , `− 1, and

W` := (H,Z1, . . . , Z`).

We have

δ′ = ∆[W0;W`]

≤
∑̀
i=1

∆[Wi−1;Wi] (by part (iv) of Theorem 6.14)

≤
∑̀
i=1

∆[H,Z1, . . . , Zi−1,H(Ai), Ai+1, . . . , A`;

H,Z1, . . . , Zi−1, Zi, Ai+1, . . . , A`]

(by Theorem 6.16)

=
∑̀
i=1

∆[H,H(Ai);H,Zi] (by Theorem 6.17)

≤ `
√
nκ/2 (by Theorem 6.21). 2

Another source of “low quality” randomness arises in certain crypto-
graphic applications, where we have a “secret” random variable A that is
distributed uniformly over a large subset of some set A, but we want to
derive from A a “secret key” whose distribution is close to that of the uni-
form distribution on a specified “key space” Z (typically, Z is the set of all
bit strings of some specified length). The leftover hash lemma, combined
with Theorem 6.22, allows us to do this using a “public” hash function—
generated at random once and for all, published for all to see, and used over
and over to derive secret keys as needed.
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Exercise 6.52. Consider again the situation in Theorem 6.21. Suppose
that Z = {0, . . . , n− 1}, but that we would rather have an almost-uniform
distribution over Z ′ = {0, . . . , t − 1}, for some t < n. While it may be
possible to work with a different family of hash functions, we do not have
to if n is large enough with respect to t, in which case we can just use the
value H(A) mod t. If Z ′ is uniformly distributed over Z ′, show that

∆[H,H(A) mod t;H,Z ′] ≤
√
nκ/2 + t/n.

Exercise 6.53. Suppose X and Y are random variables with images X and
Y, respectively, and suppose that for some ε, we have P[X = x | Y = y] ≤ ε
for all x ∈ X and y ∈ Y. Let H be a universal family of hash functions from
X to Z, where Z is of size n. Let H denote a random variable with the
uniform distribution onH, and Z denote a random variable with the uniform
distribution on Z, where the three variables H, Z, and (X,Y ) are mutually
independent. Show that the statistical distance between (Y,H,H(X)) and
(Y,H,Z) is at most

√
nε/2.

6.10 Discrete probability distributions

In addition to working with probability distributions over finite sample
spaces, one can also work with distributions over infinite sample spaces.
If the sample space is countable, that is, either finite or countably infinite,
then the distribution is called a discrete probability distribution. We
shall not consider any other types of probability distributions in this text.
The theory developed in §§6.1–6.5 extends fairly easily to the countably
infinite setting, and in this section, we discuss how this is done.

6.10.1 Basic definitions

To say that the sample space U is countably infinite simply means that
there is a bijection f from the set of positive integers onto U ; thus, we can
enumerate the elements of U as u1, u2, u3, . . . , where ui = f(i).

As in the finite case, the probability function assigns to each u ∈ U a
value P[u] ∈ [0, 1]. The basic requirement that the probabilities sum to
one (equation (6.1)) is the requirement that the infinite series

∑∞
i=1 P[ui]

converges to one. Luckily, the convergence properties of an infinite series
whose terms are all non-negative is invariant under a re-ordering of terms
(see §A4), so it does not matter how we enumerate the elements of U .

Example 6.29. Suppose we flip a fair coin repeatedly until it comes up
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“heads,” and let the outcome u of the experiment denote the number of coins
flipped. We can model this experiment as a discrete probability distribution
D = (U ,P), where U consists of the set of all positive integers, and where
for u ∈ U , we set P[u] = 2−u. We can check that indeed

∑∞
u=1 2−u = 1, as

required.
One may be tempted to model this experiment by setting up a probabil-

ity distribution on the sample space of all infinite sequences of coin tosses;
however, this sample space is not countably infinite, and so we cannot con-
struct a discrete probability distribution on this space. While it is possible
to extend the notion of a probability distribution to such spaces, this would
take us too far afield. 2

Example 6.30. More generally, suppose we repeatedly execute a Bernoulli
trial until it succeeds, where each execution succeeds with probability p > 0
independently of the previous trials, and let the outcome u of the experiment
denote the number of trials executed. Then we associate the probability
P[u] = qu−1p with each positive integer u, where q := 1 − p, since we have
u− 1 failures before the one success. One can easily check that these prob-
abilities sum to 1. Such a distribution is called a geometric distribution.
2

Example 6.31. The series
∑∞

i=1 1/i3 converges to some positive number
c. Therefore, we can define a probability distribution on the set of positive
integers, where we associate with each i ≥ 1 the probability 1/ci3. 2

Example 6.32. More generally, if xi, i = 1, 2, . . . , are non-negative num-
bers, and 0 < c :=

∑∞
i=1 xi < ∞, then we can define a probability distri-

bution on the set of positive integers, assigning the probability xi/c to i.
2

As in the finite case, an event is an arbitrary subset A of U . The prob-
ability P[A] of A is defined as the sum of the probabilities associated with
the elements of A—in the definition (6.2), the sum is treated as an infinite
series when A is infinite. This series is guaranteed to converge, and its value
does not depend on the particular enumeration of the elements of A.

Example 6.33. Consider the geometric distribution discussed in Exam-
ple 6.30, where p is the success probability of each Bernoulli trial, and
q := 1 − p. For integer i ≥ 1, consider the event A that the number of
trials executed is at least i. Formally, A is the set of all integers greater
than or equal to i. Intuitively, P[A] should be qi−1, since we perform at
least i trials if and only if the first i− 1 trials fail. Just to be sure, we can



6.10 Discrete probability distributions 143

compute

P[A] =
∑
u≥i

P[u] =
∑
u≥i

qu−1p = qi−1p
∑
u≥0

qu = qi−1p · 1
1− q

= qi−1. 2

It is an easy matter to check that all the statements made in §6.1 carry
over verbatim to the case of countably infinite sample spaces. Moreover, it
also makes sense in the countably infinite case to consider events that are a
union or intersection of a countably infinite number of events:

Theorem 6.23. Let A1,A2, . . . be an infinite sequence of events.

(i) If Ai ⊆ Ai+1 for all i ≥ 1, then P[
⋃

i≥1Ai] = limi→∞ P[Ai].

(ii) In general, we have P[
⋃

i≥1Ai] ≤
∑

i≥1 P[Ai].

(iii) If the Ai are pairwise disjoint, then P[
⋃

i≥1Ai] =
∑

i≥1 P[Ai].

(iv) If Ai ⊇ Ai+1 for all i ≥ 1, then P[
⋂

i≥1Ai] = limi→∞ P[Ai].

Proof. For (i), let A :=
⋃

i≥1Ai, and let a1, a2, . . . be an enumeration of the
elements of A. For any ε > 0, there exists a value k0 such that

∑k0
i=1 ai >

P[A] − ε. Also, there is some k1 such that {a1, . . . , ak0} ⊆ Ak1 . Therefore,
for any k ≥ k1, we have P[A]− ε < P[Ak] ≤ P[A].

(ii) and (iii) follow by applying (i) to the sequence {
⋃i

j=1Aj}i, and making
use of (6.5) and (6.6), respectively.

(iv) follows by applying (i) to the sequence {Ai}, using (the infinite version
of) DeMorgan’s law. 2

6.10.2 Conditional probability and independence

All of the definitions and results in §6.2 carry over verbatim to the countably
infinite case. Equation (6.7) as well as Bayes’ theorem (equation 6.8) and
equation (6.9) extend mutatis mutandus to the case of an infinite partition
B1,B2, . . . .

6.10.3 Random variables

All of the definitions and results in §6.3 carry over verbatim to the countably
infinite case (except Theorem 6.2, which of course only makes sense in the
finite setting).
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6.10.4 Expectation and variance

We define the expected value of a real random variable X exactly as before:

E[X] :=
∑
u∈U

X(u) · P[u],

where, of course, the sum is an infinite series. However, if X may take
negative values, then we require that the series converges absolutely ; that is,
we require that

∑
u∈U |X(u)| · P[u] < ∞ (see §A4). Otherwise, we say the

expected value of X does not exist. Recall from calculus that a series that
converges absolutely will itself converge, and will converge to the same value
under a re-ordering of terms. Thus, if the expectation exists at all, its value
is independent of the ordering on U . For a non-negative random variable
X, if its expectation does not exist, one may express this as “E[X] =∞.”

All of the results in §6.4 carry over essentially unchanged, except that one
must pay some attention to “convergence issues.”

Equations (6.13) and (6.14) hold, but with the following caveats (verify):

• If X is a real random variable with image X , then its expected value
E[X] exists if and only if the series

∑
x∈X xP[X = x] converges abso-

lutely, in which case E[X] is equal to the value of the latter series.

• If X is a random variable with image X and f a real-valued function
on X , then E[f(X)] exists if and only if the series

∑
x∈X f(x)P[X = x]

converges absolutely, in which case E[f(X)] is equal to the value of
the latter series.

Example 6.34. Let X be a random variable whose distribution is as in
Example 6.31. Since the series

∑
1/n2 converges and the series

∑
1/n

diverges, the expectation E[X] exists, while E[X2] does not. 2

Theorems 6.6 and 6.7 hold under the additional hypothesis that E[X] and
E[Y ] exist.

If X1, X2, . . . is an infinite sequence of real random variables, then the ran-
dom variable X :=

∑∞
i=1Xi is well defined provided the series

∑∞
i=1Xi(u)

converges for all u ∈ U . One might hope that E[X] =
∑∞

i=1 E[Xi]; however,
this is not in general true, even if the individual expectations E[Xi] are non-
negative, and even if the series defining X converges absolutely for all u;
nevertheless, it is true when the Xi are non-negative:

Theorem 6.24. Let X :=
∑

i≥1Xi, where each Xi takes non-negative val-
ues only. Then we have

E[X] =
∑
i≥1

E[Xi].
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Proof. We have∑
i≥1

E[Xi] =
∑
i≥1

∑
u∈U

Xi(u)P[u] =
∑
u∈U

∑
i≥1

Xi(u)P[u]

=
∑
u∈U

P[u]
∑
i≥1

Xi(u) = E[X],

where we use the fact that we may reverse the order of summation in an
infinite double summation of non-negative terms (see §A5). 2

Using this theorem, one can prove the analog of Theorem 6.8 for countably
infinite sample spaces, using exactly the same argument.

Theorem 6.25. If X is a random variable that takes non-negative integer
values, then

E[X] =
∞∑
i=1

P[X ≥ i].

A nice picture to keep in mind with regards to Theorem 6.25 is the follow-
ing. Let pi := P[X = i] for i = 0, 1, . . . , and let us arrange the probabilities
pi in a table as follows:

p1

p2 p2

p3 p3 p3
...

. . .

Summing the ith row of this table, we get iP[X = i], and so E[X] is equal
to the sum of all the entries in the table. However, we may compute the
same sum column by column, and the sum of the entries in the ith column
is P[X ≥ i].

Example 6.35. Suppose X is a random variable with a geometric distri-
bution, as in Example 6.30, with an associated success probability p and
failure probability q := 1 − p. As we saw in Example 6.33, for all integer
i ≥ 1, we have P[X ≥ i] = qi−1. We may therefore apply Theorem 6.25 to
easily compute the expected value of X:

E[X] =
∞∑
i=1

P[X ≥ i] =
∞∑
i=1

qi−1 =
1

1− q
=

1
p
. 2

Example 6.36. To illustrate that Theorem 6.24 does not hold in general,
consider the geometric distribution on the positive integers, where P[j] = 2−j

for j ≥ 1. For i ≥ 1, define the random variable Xi so that Xi(i) = 2i,
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Xi(i + 1) = −2i+1, and Xi(j) = 0 for all j /∈ {i, i + 1}. Then E[Xi] = 0 for
all i ≥ 1, and so

∑
i≥1 E[Xi] = 0. Now define X :=

∑
i≥1Xi. This is well

defined, and in fact X(1) = 2, while X(j) = 0 for all j > 1. Hence E[X] = 1.
2

The variance Var[X] of X exists if and only if E[X] and E[(X − E[X])2]
exist, which holds if and only if E[X] and E[X2] exist.

Theorem 6.9 holds under the additional hypothesis that E[X] and E[X2]
exist. Similarly, Theorem 6.10 holds under the additional hypothesis that
E[Xi] and E[X2

i ] exist for each i.
The definition of conditional expectation carries over verbatim, as do

equations (6.15) and (6.16). The analog of (6.16) for infinite partitions
B1,B2, . . . does not hold in general, but does hold ifX is always non-negative.

6.10.5 Some useful bounds

Both Theorems 6.11 and 6.12 (Markov’s and Chebyshev’s inequalities) hold,
under the additional hypothesis that the relevant expectations and variances
exist.

Exercise 6.54. Suppose X is a random variable taking positive integer
values, and that for some real number q, with 0 ≤ q ≤ 1, and for all integers
i ≥ 1, we have P[X ≥ i] = qi−1. Show that X has a geometric distribution
with associated success probability p := 1− q.

Exercise 6.55. A gambler plays a simple game in a casino: with each play
of the game, the gambler may bet any number m of dollars; a coin is flipped,
and if it comes up “heads,” the casino pays m dollars to the gambler, and
otherwise, the gambler pays m dollars to the casino. The gambler plays
the game repeatedly, using the following strategy: he initially bets a dollar;
each time he plays, if he wins, he pockets his winnings and goes home, and
otherwise, he doubles his bet and plays again.

(a) Show that if the gambler has an infinite amount of money (so he
can keep playing no matter how many times he looses), then his ex-
pected winnings are one dollar. Hint: model the gambler’s winnings
as a random variable on a geometric distribution, and compute its
expected value.

(b) Show that if the gambler has a finite amount of money (so that he
can only afford to loose a certain number of times), then his expected
winnings are zero (regardless of how much money he starts with).
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Hint: in this case, you can model the gambler’s winnings as a random
variable on a finite probability distribution.

6.11 Notes

Our Chernoff bound (Theorem 6.13) is one of a number of different types of
bounds that appear in the literature under the rubric of “Chernoff bound.”

Universal and pairwise independent hash functions, with applications to
hash tables and message authentication codes, were introduced by Carter
and Wegman [25, 99].

The leftover hash lemma (Theorem 6.21) was originally stated and proved
by Impagliazzo, Levin, and Luby [46], who use it to obtain an important
result in the theory of cryptography. Our proof of the leftover hash lemma is
loosely based on one by Impagliazzo and Zuckermann [47], who also present
further applications.


